Snell's law of refraction observed in thermal frontal polymerization.

نویسندگان

  • John A Pojman
  • Veronika Viner
  • Burcu Binici
  • Shanna Lavergne
  • Melanie Winsper
  • Dmitry Golovaty
  • Laura Gross
چکیده

We demonstrate that Snell's law of refraction can be applied to thermal fronts propagating through a boundary between regions that support distinct frontal velocities. We use the free-radical frontal polymerization of a triacrylate with clay filler that allows for two domains containing two different concentrations of a peroxide initiator to be molded together. Because the polymerization reaction rates depend on the initiator concentration, the propagation speed is different in each domain. We study fronts propagating in two parallel strips in which the incident angle is 90 degrees. Our data fit Snell's law v(r)/v(i)=sin theta(r)/sin theta(i), where v(r) is the refracted velocity, v(i) is the incident velocity, theta(r) is the angle of refraction, and theta(i) is the incident angle. Further, we study circular fronts propagating radially from an initiation point in a high-velocity region into a low-velocity region (and vice versa). We demonstrate the close resemblance between the numerically simulated and experimentally observed thermal reaction fronts. By measuring the normal velocity and the angle of refraction of both simulated and experimental fronts, we establish that Snell's law holds for thermal frontal polymerization in our experimental system. Finally we discuss the regimes in which Snell's law may not be valid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snell's law for surface electrons: refraction of an electron gas imaged in real space.

On NaCl(100)/Cu(111) an interface state band is observed that descends from the surface-state band of the clean copper surface. This band exhibits a Moiré-pattern-induced one-dimensional band gap, which is accompanied by strong standing-wave patterns, as revealed in low-temperature scanning tunneling microscopy images. At NaCl island step edges, one can directly see the refraction of these stan...

متن کامل

Refraction at the Interface of a Lossy Metamaterial

The refraction phenomenon at the interface of an ordinary material and a lossy metamaterial has been investigated. For oblique incidence on the lossy metamaterial, the planes of constant amplitude of the refracted wave are parallel to the interface and the plane of constant phases make a real angle with the interface (real refraction angle). The real refraction angle and hence, the real refract...

متن کامل

Experimental verification and simulation of negative index of refraction using Snell's law.

We report the results of a Snell's law experiment on a negative index of refraction material in free space from 12.6 to 13.2 GHz. Numerical simulations using Maxwell's equations solvers show good agreement with the experimental results, confirming the existence of negative index of refraction materials. The index of refraction is a function of frequency. At 12.6 GHz we measure and compute the r...

متن کامل

Numerical simulations of negative-index refraction in wedge-shaped metamaterials.

A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the ...

متن کامل

Experimental demonstration of Snell's law for shear zone refraction in granular materials.

We present experiments on slow shear flow in granular materials. Under appropriate conditions shear localizes in narrow shear zones. We demonstrate that when the shear zone crosses a material boundary, it refracts in accordance with Snell's law in optics-an effect first found in simulations [Phys. Rev. Lett. 98, 018301 (2007)]. The shear zone is the one that minimizes the dissipation rate upon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 2007